Rewrite sech $(\frac{1}{2}\ln 5)$ in terms of exponential functions and simplify. $\frac{2}{e^{\frac{1}{2}\ln 5} + e^{\frac{1}{2}\ln 5}} = \frac{2}{e^{\frac{1}{10}5\frac{1}{2}} + e^{\frac{1}{10}5\frac{1}{2}}} = \frac{2}{|5|} \cdot \frac{\sqrt{5}}{|5|} = \frac{2\sqrt{5}}{|5|} = \frac{\sqrt{5}}{|5|} = \frac{\sqrt{5}}{|5|}$

Write and prove a formula for sinh(x - y) in terms of sinh x, sinh y, cosh x and cosh y. SCORE: /6 PTS Prove that $g(x) = \frac{1}{2} \ln \frac{1+x}{1-x}$ is the inverse of $f(x) = \tanh x$ by simplifying f(g(x)).

You may use any identities that you found in part [1] of the Hyperbolic Functions Supplement without proving them.

$$\frac{1}{2} \ln \frac{1+x}{1-x} = \frac{1}{2} \ln \frac{1+x}{1-x}$$

$$= \frac{1+x}{1-x} - \frac{1}{1-x}$$

$$= \frac{1+x}{1-x} - \frac{1}{1-x}$$

$$= \frac{1+x}{1-x} - \frac{1}{1-x}$$

$$= \frac{1+x}{1-x}$$

There is an identity involving $\sinh x$ and $\cosh x$ that resembles a Pythagorean identity from trigonometry. SCORE: _____/7 PTS

[a] Write that identity involving $\sinh x$ and $\cosh x$. You do NOT need to prove the identity.

[b] Write the identity for $\cosh 2x$ that uses both $\sinh x$ and $\cosh x$ simultaneously. You do NOT need to prove the identity.

$$\cosh 2x = \cosh^2 x + \sinh^2 x \right]$$

[c] Use the results of [a] and [b] to find and \underline{prove} an identity for $\cosh 2x$ that uses only $\sinh x$.

Use the results of [a] and [b] to find and prove an identity for
$$\cosh 2x$$
 that uses only
$$\cos h 2x = (1 + \sinh^2 x) + \sinh^2 x = (1 + 2\sinh^2 x) + \sinh^2 x$$

$$= (1 + 2\sinh^2 x) + \sinh^2 x = (1 + 2 + 2\sinh^2 x) + \sinh^2 x = (1 + 2$$

[d] If $\tanh x = -\frac{5}{6}$, find $\sinh x$ using identities.

You must explicitly show the use of the identities but you do NOT need to prove the identities.

= - 5 - 5 0